ML: 데이터와 통계로 컴퓨터를 학습시킴. (데이터를 분석해서 결과를 예측함) Python Machine Learning (w3schools.com)
Python Machine Learning
Machine Learning Machine Learning is making the computer learn from studying data and statistics. Machine Learning is a step into the direction of artificial intelligence (AI). Machine Learning is a program that analyses data and learns to predict the outc
www.w3schools.com
데이터의 종류:
- Numerical
- Categorical
- Ordinal
Numerical data :숫자
- Discrete Data
- numbers that are limited to integers. Example: The number of cars passing by. - Continuous Data
- numbers that are of infinite value. Example: The price of an item, or the size of an item
Categorical data : 비교 불가 데이터. values that cannot be measured up against each other. Example: a color value, or any yes/no values.
Ordinal data : 상대적으로 비교 가능한 데이터. like categorical data, but can be measured up against each other. Example: school grades where A is better than B and so on.
데이터 타입을 알아야 어떻게 분석할지 알 수 있다.
- Mean - The average value
- Median - The mid point value
- Mode - The most common value
예제:
import numpy
from scipy import stats
speed = [99,86,87,88,111,86,103,87,94,78,77,85,86]
mean = numpy.mean(speed)
median = numpy.median(speed)
mode = stats.mode(speed)
standard_deviation = numpy.std(speed)
print(mean)
print()
print(median)
print()
print(mode)
print()
print(standard_deviation)
#The mode() method returns a ModeResult object that contains the mode number (86), and count (how many times the mode number appeared (3)).
결과:
89.76923076923077
87.0
ModeResult(mode=array([86]), count=array([3]))
9.258292301032677
Standard Deviation
정의: 각 값이 서로 얼마나 퍼져있는지 확인. (mean value를 기준으로)
예제는 상단에 있음
'400===Dev Library > Machine Learning' 카테고리의 다른 글
초보자를 위한 딥러닝 완전정복 가이드 🧠 (1) | 2024.11.03 |
---|---|
Machine Learning Introduced (0) | 2024.05.28 |
Naive Bayes model Introduced (0) | 2024.05.27 |
Hugging Face Introduced (0) | 2024.05.27 |
Transformers in LLMs Introduced (0) | 2024.05.26 |